This question often comes when discussing electronic correction.
Let’s separate things :
– under 200 to 300Hz, room modes are allways present in any room (of normal size) and you generally have to smooth peaks, and avoid filling dips (don’t add energy : energy is there but it just cancels at some places)
– from 200 to 500-800hz, the position of the loudspeaker in relation to walls gives peaks and dips, but those acoustic problems can be improved with electronic EQ (above those frequencies, influence of reflections on walls are very dependent on exact listening position and fortunately, the auditory process has a frequency smoothing effect).
– above 600-700Hz, you may need to correct the loudspeaker if its response is not perfect !
So you need a method that shows only (and all) the defects that must be corrected (that’s why I think that MMM is a cool method).
It is important to note that a bad correction may be worse than no correction at all : so it is very important to be able to listen and compare with/without EQ (with levels exactly adjusted).
Hereunder is a comparison of 9 MMM measurements of the same loudspeaker in 9 different rooms (10 to 30 m2 surfaces) at distances between 2 and 3m. It clearly shows that :
– under 300Hz, the room is the key
– between 300 and 800Hz, the room and the loudspeaker are both important
– above 800Hz, the loudspeaker is the main factor. The response is the same but the slope depends of the distance and the room absorption (refer to Harman’s PIR Predicted In-Room)
Another comparison : same loudspeaker in anechoic room, and two other rooms (one room was measured 3 times) all measured MMM without any special acoustic correction. Here only the differences between measurements are shown with the base at 0dB being anechoic. You can clearly see that above 600Hz, delta is less than 2dB : MMM is measuring mainly the sound of the loudspeaker itself, not the room.